Thermally stable N2-intercalated WO3 photoanodes for water oxidation.
نویسندگان
چکیده
We describe stable intercalation compounds of the composition xN(2)·WO(3) (x = 0.034-0.039), formed by trapping N(2) in WO(3). The incorporation of N(2) significantly reduced the absorption threshold of WO(3); notably, 0.039N(2)·WO(3) anodes exhibited photocurrent under illumination at wavelengths ≤640 nm with a faradaic efficiency for O(2) evolution in 1.0 M HClO(4)(aq) of nearly unity. Spectroscopic and computational results indicated that deformation of the WO(3) host lattice, as well as weak electronic interactions between trapped N(2) and the WO(3) matrix, contributed to the observed red shift in optical absorption. Noble-gas-intercalated WO(3) materials similar to xN(2)·WO(3) are predicted to function as photoanodes that are responsive to visible light.
منابع مشابه
Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte.
WO3 is a promising candidate for a photoanode material in an acidic electrolyte, in which it is more stable than most metal oxides, but kinetic limitations combined with the large driving force available in the WO3 valence band for water oxidation make competing reactions such as the oxidation of the acid counterion a more favorable reaction. The incorporation of an oxygen evolving catalyst (OE...
متن کاملPhotoelectrochemical water oxidation on photoanodes fabricated with hexagonal nanoflower and nanoblock WO3.
Hexagonal nanoflower WO3 arrays have been prepared by using RCOO(-) as the structure directing agent in the microwave-assisted hydrothermal synthesis process. The photoelectrochemical performance of the synthesized hexagonal flower-like WO3 electrode was enhanced compared with the block-like WO3 film.
متن کاملReactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting
Bismuth vanadate (BiVO4) has attracted increasing attention as a photoanode for photoelectrochemical (PEC) water splitting. It has a band gap in the visible light range (2.4−2.5 eV) and a valence band position suitable for driving water oxidation under illumination. While a number of methods have been used to make BiVO4 photoanodes, scalable thin film deposition has remained relatively underexp...
متن کاملC2ee02929d 5694..5700
The faradaic efficiency for O2(g) evolution at thin-filmWO3 photoanodes has been evaluated in a series of acidic aqueous electrolytes. In 1.0 M H2SO4, persulfate was the predominant photoelectrochemical oxidation product, and no O2 was detected unless catalytic quantities of Ag (aq) were added to the electrolyte. In contact with 1.0 M HClO4, dissolved O2 was observed with nearly unity faradaic ...
متن کاملWO3-α-Fe2O3 composite photoelectrodes with low onset potential for solar water oxidation.
The physical and photoelectrochemical properties of a composite oxide photoelectrode comprised of α-Fe2O3 and WO3 crystals is investigated. The composite films exhibit a water oxidation photocurrent onset potential as low as 0.43 V vs. RHE, a value considerably lower than that of pure α-Fe2O3 photoanodes prepared in comparable synthesis conditions. This result represents one of the lowest onset...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 134 44 شماره
صفحات -
تاریخ انتشار 2012